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Provably

Unforgeable Signatures

Jurjen N.E. Bos
Hakfort 627
1102 LA Amsterdam

Digital signatures are one of the more useful applications of cryptography.
There are many different signature schemes with varying degrees of security
and efficiency, The scheme that has security in the strongest sense (signatures
cannot be obtained for a given message, even if other signatures of the forger's
choice are available), is rather inefficient. In this paper a much more ethicient

scheme is shown, that allows for many applications, including the fast signing
of short messages.

1. INTRODUCTION

This article is a slightly edited version of Chapter 5 of my dissertation {5]. It has
been accepted at the annual conference Crypto’92. My dissertation, “Practi-
cal Privacy”, is about cryptography, the branch of mathematics that deals with
protection of information. The dissertation deals with several aspects of privacy
protection in the modern world where security is becoming more and more co1-
mon, while privacy protection seems to be a forgotten issue. Chapter 5 deals
with a more technical issue; that of a digital signature, the electronic variant of
a handwritten signature.

Modern cryptography exists since Whitfield Diffie and Martin Hellman wrote
their paper “New Directions in Cryptography” [12]. This article expands the
science of encrypting and decrypting of messages with a secret key into a new
branch of mathematics. Modern cryptography is a rapidly growing area of re-
search with many applications.

The most basic form of modern cryptography is the asymmetric or public
cryptosystem. This is a method of encryption where the encryption key does
not give any information about the decryption key, or vice versa. This implies
that one of the keys can be published, while the other can be kept secret. Such
cryptosystems are usable for multiparty protocols, where many users use Cryp-
tography together.

One of the more useful multiparty protocols is the digital signature. A digital
signature on a message is a special encryption of the message that can easily
be verified by third parties. This can be implemented as an encryption with a
public-key system, if the key is published.
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The most commonly used public cryptosystem is the RSA system [37]. It is
widely 1n use and has many applications. Encryption of a message, interpreted
by RSA as a number, consists of a modular exponentiation:

r =m° (modn).

Here m is the message to be encrypted, and z the result of the encryption; n is
a public number that is hard to factor (150-200 decimal digits). Decryption can
be done with another exponentiation:

m — 74 (mod *n);

d and e must be related so that m?® = m for every m. This is accomplished by
taking d - e = 1(mod ¢(n)). If d and n are public, e can be kept secret. The
RSA assumption is that e cannot be computed from d and n if the factorization
of n is unknown. In this article, the modulus is omitted for clarity; furthermore,
m¢ is written as /m to emphasize that e is secret and can only be computed
by the issuer of d and n. .

T'here are several attempts in the literature to make an efficient provably secure
signature scheme. With “secure”, we mean that it is hard for unauthorized
parties to make a false signature. The strongest sense of security is defined in
22|, and a scheme is described there that provides this level of security under
the factoring assumption. Our new signature scheme gives the same level of
security much more efficiently—in fact, it is about as efficient as the RSA scheme.
Parameter values can be chosen to suit special needs. In the most efficient
case, a signature on a short message (64 bits) can be signed in 33 modular
multiplications (not counting precomputation) and verified in 35 multiplications.
The scheme is based on the modular root (RSA) assumption.

After the introduction, we discuss other signature schemes relevant to this
work. We discuss the Lamport signature scheme, on which this signature scheme
1s based, in detail. Then, the new scheme is explained, and the possible choices
for parameter values are shown.

Signature scheme

An overview of signature schemes, comparing securities, can be found in the
paper mentioned earlier [22]. We use their notation. They define a signature
scheme as consisting of the following components:

e A security parameter k, that defines the security of the system, and that
may also influence performance figures such as the length of signatures,
running times and so on.

o A message space M, that defines on which messages the signature algo-
rithm may be applied.

o A signature bound b, that defines the maximal number of signatures that

can be generated without reinitialization. Typically, this value depends on
k, but i1t can be infinite.
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for generating a signature, while the public key P is used to verify the
signature.
o A signature algorithm o, that produces a signature, given the secret key

e Finally, a verification algorithm, that produces true or false on input of
a signature and a public key. It ouputs true if and only if the signature 1s
valid for the particular public key.

Some of these algorithms may be randomized, which means that they may
use random numbers. Of course, G must be randomized, because different users
must produce difterent signatures. The signing algorithm s is sometimes ran-
1s usually not randomized.

A simple example of a signature scheme is an asymmetric crypto system. The
secret key of the signer. Verification consists of decryption of the signature with
the public key, and comparing the result with the message. The main problem
with such a scheme is that random messages f(x) can be signed by taking a
random signature value x. A simple solution is to let M be a sparse subset of a
larger space, so that the probability that f(x) is a valid message for random x
is low. An example of a sparse subset is the set of “meaningful” messages.

Related work

The notion “digital signature” was introduced in |12|. This paper, which can be
considered the foundation of modern cryptography, discusses the possibility of
digital signatures and the use of a trapdoor one-way function to make them.

Since the RSA scheme [37], an enormous number of signature schemes have
been proposed [1, 4, 6, 8, 9, 10, 11, 13, 15, 16, 19, 20, 21, 22, 23, 26, 27, 29, 30,
33, 34, 35, 37, 38, 39, 43], applied [3, 7, 45, 47], and broken (2, 14, 36, 39, 44,
46]. We will not discuss all these schemes here; we only discuss the ones that
are interesting to compare with the new scheme.

The schemes [21, 22, 23, 35| are steps towards a provably secure signature
scheme. The scheme described in the last article is secure 1 a very strong
way: it is “existentially unforgeable under an adaptive chosen-message attack”
with probability smaller than 1/Q(k) for every polynomial . This means that
generating a new signature is polynomially hard if signatures on old messages
are known, even if the old signatures are on messages chosen by the attacker.

The scheme in [22] is based on factoring. While our scheme is based on
the slightly stronger RSA assumption, it is much more eflicient. The signature
scheme of [22] uses a large amount of memory for the signer, and quite a lot of
computation. Our scheme uses no memory at all, except for a counter and the
public values, and signing and verifying takes about as much computation as
RSA does, depending on the parameters.
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2. THE LAMPORT SCHEME

To explain the new system, we compare it to the earlier Lamport scheme (ex-
plained already in {12, page 650]). To make a signature in this scheme, the signer
makes a secret list of 2k random numbers

A =ay0,a1,1,020,a021,- -, 00, Ak, 1,

applies a one-way function f to all elements, and publishes the result B:

f(a'l,())v f(afz,o)a JRI f(&k,,o)
f(a'l.,l)a f(ag,l): ey f(ak:,l)

T'he signature consists of the numbers A1,my>Q2,mey- -,k m, from the list A
(one from each “column”), where my,ms, ... , M are the bits of the message to
be signed. The lists A and B cannot be used again.

T'he properties of Lamport’s scheme are easy to verify:

e Signing a message is only the publication of the proper elements of A.

e 'lo forge a signature, one needs to find certain values from the list A. How
hard this is, depends on the security of the one-way function f.

o If the values A are only used for one signature, new signatures cannot be
made from old ones.

o Verification of a signature consists of applying the one-way function to the

signature values, and comparing them to the public values determined by
the signed message.

T'he new system uses the same idea, with three important differences. First,
the list B is replaced by another list that can be used for all signatures. Second,
the list A is constructed from two lists so that less memory 1s needed to define it.
Third, the elements of A in the signature can be combined into a. single number.

A small optimization

T'here is a trivial optimization of Lamport’s scheme that reduces the number of
public function values to almost half, that we could not find in the literature.
T'his optimization is independent of the signature scheme as such. Basically,
the signer signs by publishing a k-element subset of the 2k secret numbers.
Lamport’s scheme chooses a particular set of subsets of the set of 2k elements,
as shown above. The necessary property of this set of subsets is that no subset
includes another. There are other sets of subsets with the property that no
subsets includes another. A largest set of subsets with this property is the set of
all k-element subsets (a well-known result from lattice theory). For these sets,

It 1S easy to see that no subset includes another. For example, in Lamport’s
scheme, the list of 6 elements '

A — a1107 a'1117 a230’ a2117 QS?O’ a371

allows us to sign messages of 3 bits. If we renumber A as ai,as,as,ay,as, Gg,
we get the set of 20 three-element subsets of A: '
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{ay,az,a3}, {ai,a2,a4}, {ai,a2,as5}, {ai,az2,a6}, {ai,as, a4},
{@1, as, (La}, {Clla ag, as}a {&13 g, Ag }, {'al.-, g5, Ag }a { (2, a3, CL4}7
{as,a3,a6}, {a2,as,a5}, {az2,aq,a6}, {a2,as,a6}, {asz,a4,as},
las, as,a6}, {ai,as,as}), {as,as,as}, {as,aq,a6}, {a4,as5,a6};

this allows us teo sign one of 20 messages, which 1s equivalent to more than 4
bits.

In general, there are

2k ot 22K
, or about ,
k VKT

k-element subsets, so that we can sign messages of about 2k — -:12- logo(km) bits.
The original Lamport scheme allowed messages of only k bits, so that we get
almost a doubling of the message size for the same size of the list ]
improvement can also be used 1in our new signature scheme.

To encode a signature, a mapping needs to be defined between messages and
these subsets:

. T'his simple

s(message) = subset.

The simplest mapping just enumerates messages (interpreted as numbers from
0 onwards) to sets (seen as binary strings that denote 1 for presence and 0
for absence) in order. Such a mapping is easily and efficiently computed by
the algorithm shown in Figure 1. The binomial coetficients do not need to be
computed by repeated multiplication and division. The first binomial coefficient
1s always the same, so it can be precomputed, and the others can be computed
by one multiplication and one division by small numbers using the properties:

t — 1 ¢ t — e t—1 t e
— : and . — —
& e t e — 1 e t

The algorithm outputs ones and zeros corresponding to the elements in the
resulting set.

Note that the Lamport scheme uses another mapping that maps numbers onto
k-element subsets, but that only a small number of these sets are used.

3. THE NEW SIGNATURE SCHEME

The new signature scheme replaces the list A of the Lamport scheme by a list
of numbers that can be organized in a matrix. Instead of using a new list B for
every signature, a fixed list called R is used for all signatures and all participants.
The one-way function f is replaced by a set of trapdoor one-way functions, that

changes per signature. For the trapdoor one-way functions, we use the modular
root function of [37].
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Let n, the message, be a number in the range 0... (%*) — 1.

Put 2k in t and & in e.

While ¢ > 0O:

Putt—11int.
[tn> (f), put n — (f) i n,e—11in e, and output a 1
(this ¢ is in the set).

Else, output a 0 (this ¢ is not in the set).

I S, S TR _M
Frara L T SRR TSR . T

FIGURE 1. Algorithm for the mapping s.

T'he construction allows us to sign long messages using only a few numbers
to define the set A. In the example of Figure 2, the set A of 12 elements is
constructed from three primes py, pa, p3 (used only for this signature) and four
public values r, ry, r3, 74 (that can be used again). This set allows us to sign
messages ot 9 bits, since there are 924 > 29 possible 6-element subsets of A.

Signing messages of 9 bits in the original Lamport scheme takes 18 public values
that can be used only once.
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FIGURE 2. Example list A of the new scheme.

The numbers a; of A are secret encryptions of the numbers r; of R, and
the corresponding decryption exponents are public. The multiplicative property
of RSA allows us to multiply the values of the signature to form one number.

Verification of a signature can be done using a simple computation, without
having to compute the separate factors.
The public values of the new system are:

¢ One modulus per signer;

o ['he system-wide list R. This list is used by all users, and that it does
not change often, so that distribution does not require much traffic. The
numbers in R are smaller than the smallest modulus used by the signers.

o A list of sets of primes that may be used for signing. For security reasons,
the sets may not overlap each other, and the signers may only use these
sets of primes.

A signature consists of the original message signed. the signature proper (an
integer smaller than the modulus of the signer), and a description of the prime
set. In the language of [22]:
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The security parameter determines the size of the RSA modulus. This

modulus can vary per user.

The message space M is (equivalent to) the set of subsets of A that include

half the elements.

e The size of the public list of sets of primes determines the signature bound
b.

o Key generation is a matter of generating an RSA modulus, and computing
exponents for the modular root extractions.

e Signing and verification are defined below.

Signing
For the list A of a signature, the set of RSA encryptions

A = {Wmod peP;re B}
1S used, where:

e P a set of primes from the public list;
e R is the public list of verification values;
e 1 i1s the RSA modulus of the signer.

As explained above, a signature is constructed from a subset determined by
s(m) of half these numbers. The constant & used in the algorithm that maps s 1s
equal to L#P‘;#-MRJ. This allows us to sign a message of almost #A = #P - #R
bits. The product of the elements of A in this subset is the signature. Since

this is a single number, the signature is much more compact than in Lamport’s
scheme.

Thus, signing a message consist of the following steps:

e Choose the set P of primes that is to be used for this signing from the
public list. This determines A:

A = {z/r; modn|i,j € {1,...,P x {1,...#R}}

Like the sets A and B in Lamport’s scheme, the set P can be used only
once. The list A need not be computed.

e Determine the message m to sign. This could be a message, or a public
hash function value of that message, for example.

e Compute the subset M of index pairs from {1,...,#P} x {1,...,#R}

from the message m with the algorithm described above:

M = s(m)

e Compute the signature proper:

S = H ri/T; (mod n),
i,j€M
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and send m, P, and S to the recipient.

There are two ways to increase the efficiency of signing. If there is time to
do a precomputation, the entire set A can be computed before the value of
m 1s known. Although this takes quite a while, signing becomes much faster,
since signing consists only of multiplying the proper values of A together. If
precomputation is not possible, the computation of S can be speeded up with a
vector addition chain [QQ] (an explanation of this method occurs in [5]).

Verification
Instead of trying to compute individual factors of the signature, the number S

can be verified in a single computation. To see this, we note that the power of
the signature

ST, where m =

should be equal to the following product that can be computed from public

values:
I I T /p;
i,jeM

The lower product can be computed with a vector addition chain. Verification
of a signature consists of checking that these two values are the same. The
verification can be performed with a single vector addition chain, if the inverse
of the signature is computed first:

(S“l)ﬂ' _ H ?,,;T/pj
i,jeM

which must evaluate to 1(mod n). To increase the efficiency of the verification,
the signer could send 1/S instead of S, so that the inversion is performed only
once by the signer, and not by every verifier.

If not all prime numbers from P occur as exponents in the set M, it is possible
to verify a signature using slightly fewer multiplications by raising .S to only the
occurring primes. Unfortunately, this optimization is only applicable in the less
Interesting cases where verification requires a lot of multiplications.

The verifier must also check whether P occurs in the public list. If P is
described as an index number in this list, this is unnecessary of course.

Parameters
In practice, the following parameter values could be used:

e A modulus size big enough to make factorization hard (200 digits, or 668

bits).
e R a list of 50 numbers.
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e The sets P consisting of the (5n+1)™ to the (5n+5)'" odd prime number,
where n € {0,...,16404} is the sequence number of the signature. This
uses the primes of up to 20 bits.

With these parameters, we have sets A of 5.50=250 elements, so that a mes-
sage of 245 bits (30 bytes) can be signed. A signature consists of the message,
the signature product (668 bits, or 84 bytes), and the index number of the prime
set (19 bits, or 2 bytes). Computing a signature takes about 1512 modular mul-
tiplications, and verification about 272; both these numbers are obtained using
vector addition chains.

The list of the odd primes up to 20 bits (the highest being 1048557) can easily
be stored; 1t would need only 64 K bytes of storage (using a bit table of the odd
numbers) and contain 82025 primes. Such a list can easily be stored in a ROM
chip. When all primes are used up, the user can choose a new modulus and start
again. Another solution is to change the list R often enough so that users do
not run out of primes. To make it possible to verify old signatures, old values of
R and the user moduli must be saved.

The list R can be computed from a seed number using a public hash function.

R. This allows us one to use
a long list R while using small amounts of data to distribute 1t. Also, less data
is needed to save old lists.

Table 1 shows the performance of the algorithm for several sizes of R and
P. For each of the entries in the table, the modulus is 668 bits (200 decimal
digits), and the size of the primes in P is 20 bits. The entries are computed
by averaging random number approximations. The entries marked by * have an
estimated standard deviation higher than 10, so that the last digits are likely to
be inaccurate.

Powers and products were computed using addition chains and sequences |5;
chapter 4|. The products were computed collecting the base numbers; for exam-
ple, the product

would be computed as

bfl':z ] bgl—l-e:a _ bgl +eo biz
using a vector addition chain algorithm. In the cases were a single power was to
be computed, the Rwindow methodS of [5; chapter 4| was applied.

The table shows that in the general case, where verification is done more often
than signing, it is advantageous to use a small P, possibly ot only one element.
The length of the list R is not a problem if it is generated from a seed, as
suggested above. Another advantage of using a small set P is that the list R
has to change less often.
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#P | message sign  verify
) 1 245 910 152

O 245 1512 272

D 20 245 1451 2048

I 250 245 796 7123%
500 1 495 1035 278

o0 10 495 2964* 1372%*
63 1 64 819 61
17 4 64 1317 162

4 17 64 1301 659

TABLE 1. Performance for different size of R and P.

The influence of the modulus size and prime size on the performance is shown
1s Table 2. In this table, the size of R is set to 50 elements, while the sets P
contain 5 elements each. The number of multiplications for signing depends on
the size of the modulus only, while the number of multiplications for verifying
depends on the size of the prime numbers only. Although it saves a little time
during the signing to use a shorter modulus, we suggest using a modulus of 668
bits, since the current technology already allows factoring numbers of up to 351
bits.

The size of the primes in the sets P determines the verification time. Choosing

smaller primes increases the speed of verification, but allows fewer signatures
before a new list R is needed.

modulus size | signing =~ oo | verilying
Hod € | signing 10 71
519 1171
668 1519 20 272
‘ 30 381

TABLE 2. Performance for different sizes of modulus and primes.

If the elements of A are precomputed, signing takes #A /2 —1 multiplications.
The precomputation takes about 796 - # A multiplications, so precomputation is
only effective if there is plenty of time for doing it.

For extremely fast verification of signatures, we choose a list R. of 68 elements,
generated from a seed number that is part of the signature, and P =3. For these
parameters, the message to be signed is 64 bits (8 bytes). This allows verifica-
tion of a signature in only 35 modular multiplications, plus the time to generate
the elements of R. Signing takes about 819 multiplications. Using precomputa-

tion, signing takes 33 multiplications, but about 55000 multiplications for the
precomputation.

4. PROOF OF UNFORGEABILITY

We prove that the signature scheme is “existentially unforgeable under an adap-
tive chosen-message attack”. This means that, under the RSA assumption, if an
attacker can influence the signer to sign any number of messages of his liking,
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he cannot forge new signatures in polynomial time, even if the messages depend
on the signatures on earlier messages.

T'he main theorem used to prove unforgeability of the signature system is
proved by Jan-Hendrik Evertse and Eugene van Heijst in [17], and is a gener-
alization of a theorem by Adi Shamir [41]. The theorem is about computing a
product of RSA roots with a given modulus if a set of products of signatures is
known. Under the RSA assumption, the theorem states that if a set of prod-
ucts of roots is known, the only new products of roots that can be constructed
In polynomial time are those that can be computed using multiplication and
division.
of different participants, because they have different moduli. This is still an open
problem. This assumption allows us to use the results of [17].

In our situation, we assume an attacker who knows many signature products
S from a participant. These products can be written as products of roots of
elements of R:

IR0 S0 TN 055 B bie o A " N .
ritrs iy r;', where | = #R,

and where the numbers x; are rational numbers. The theorem of [17] states that
if we interpret the x as vectors, the only new products that can be computed by
the attacker correspond to linear combinations of these vectors. What remains
to be proved is that linear combinations of these vectors do not give products
that the attacker can use for new signatures.

the set P of the corresponding signature, since the x; are sums of the form
}-}; -+ }513 + - - -, where p; € P. This means that we can speak of “the set of primes
in a vector”, meaning both the set of primes that occur in the denominators ot
the elements, and the set P used for generating the signature. Every signature
uses another P, and the sets P do not overlap, so the sets of primes in the
vectors also do not overlap. A linear combination of vectors will contain only
primes that occurred in the original vectors. From this we see that combining
signatures with multiplication and division will not produce a signature with a
set P that is not used before.

For a set P that has already been used, the only linear combination of vectors
that contains the primes of P is a multiple of the corresponding vector, because
any other linear combination of vectors contains primes not in P. This means
that other signature products do not help compute a new signature product with
a given set P. From the definition of the signature product, we see that a power
of a product cannot be a signature on another message, so this method also
yields no new signatures for the attacker.

Note that if m is a one-way hash function of a message, signatures on other
messages can be forged if the hash function is broken. This is of course a separate
problem from the security of the signature scheme.

From the above we conclude that an attacker cannot, under the RSA assump-

tion, produce a signature product that is not already computed by the signer.
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This finishes the proof that the signature scheme is secure.

5. CONCLUSION

It was already known that a signature with provable unforgeability existed under
the factoring assumption. Our scheme, based on the modular root assumption,
improves on the scheme in the literature on several points: signatures are smaller,
while signing and verification use much less memory and computation. The new
scheme has a large degree of flexibility, allowing the signing of both long and
short messages by varying the parameters.
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